first commit
This commit is contained in:
parent
abc6526143
commit
26631f9b48
24 changed files with 1089 additions and 1 deletions
150
Code/5-ANOVA-SciPy.py
Normal file
150
Code/5-ANOVA-SciPy.py
Normal file
|
|
@ -0,0 +1,150 @@
|
|||
import numpy as np
|
||||
import openpyxl
|
||||
import csv
|
||||
import os.path
|
||||
from scipy.stats import f_oneway
|
||||
|
||||
|
||||
def read_value(patient_dir, atlas, data_type):
|
||||
folder_name = os.path.basename(patient_dir)
|
||||
csv_file_path = os.path.join(patient_dir, f"{data_type}_{atlas}_result", "result_atlas.csv")
|
||||
|
||||
result = [folder_name]
|
||||
with open(csv_file_path, mode='r') as data_csv_file:
|
||||
csv_reader = csv.DictReader(data_csv_file)
|
||||
for row in csv_reader:
|
||||
mean = float(row["meanValue"])
|
||||
result.append(mean)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def read_header(patient_dir, atlas, data_type):
|
||||
header = ['编号']
|
||||
|
||||
csv_file_path = os.path.join(patient_dir, f"{data_type}_{atlas}_result", "result_atlas.csv")
|
||||
|
||||
with open(csv_file_path, mode='r') as data_csv_file:
|
||||
csv_reader = csv.DictReader(data_csv_file)
|
||||
for row in csv_reader:
|
||||
region_name = row["Chinese Name"]
|
||||
header.append(region_name)
|
||||
|
||||
return header
|
||||
|
||||
|
||||
def generate_stats_row(name, region_size, function, patient_size, extra_parameter):
|
||||
result = [name]
|
||||
|
||||
for i in range(region_size):
|
||||
letter = openpyxl.utils.cell.get_column_letter(i + 2)
|
||||
result.append(f'={function}({letter}2:{letter}{patient_size + 1}{extra_parameter})')
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def write_to_work_sheet(work_sheet, patient_list, atlas, data_type):
|
||||
if len(patient_list) == 0:
|
||||
return
|
||||
|
||||
header = read_header(patient_list[0], atlas, data_type)
|
||||
|
||||
work_sheet.append(header)
|
||||
|
||||
for patient_dir in patient_list:
|
||||
print(data_type, patient_dir)
|
||||
patient_data = read_value(patient_dir, atlas, data_type)
|
||||
|
||||
work_sheet.append(patient_data)
|
||||
|
||||
region_size = len(header) - 1
|
||||
work_sheet.append([])
|
||||
work_sheet.append([])
|
||||
work_sheet.append(generate_stats_row('均值', region_size, 'AVERAGE', len(patient_list), ''))
|
||||
work_sheet.append(generate_stats_row('标准差', region_size, 'STDEV', len(patient_list), ''))
|
||||
work_sheet.append(generate_stats_row('最小值', region_size, 'MIN', len(patient_list), ''))
|
||||
work_sheet.append(generate_stats_row('5%', region_size, 'PERCENTILE', len(patient_list), ',0.05'))
|
||||
work_sheet.append(generate_stats_row('25%', region_size, 'PERCENTILE', len(patient_list), ',0.25'))
|
||||
work_sheet.append(generate_stats_row('50%', region_size, 'PERCENTILE', len(patient_list), ',0.50'))
|
||||
work_sheet.append(generate_stats_row('75%', region_size, 'PERCENTILE', len(patient_list), ',0.75'))
|
||||
work_sheet.append(generate_stats_row('95%', region_size, 'PERCENTILE', len(patient_list), ',0.95'))
|
||||
work_sheet.append(generate_stats_row('最大值', region_size, 'MAX', len(patient_list), ''))
|
||||
|
||||
|
||||
def write_anova(workbook, work_sheet, groups, atlas, data_type):
|
||||
header = ['', 'F', 'p']
|
||||
work_sheet.append(header)
|
||||
|
||||
sheet_dict = {}
|
||||
for group_name, group in groups.items():
|
||||
sheet_dict[group_name] = f'{group_name}_{atlas}_{data_type}'
|
||||
|
||||
first_group_sheet = workbook[list(sheet_dict.values())[0]]
|
||||
for column_num in range(2, first_group_sheet.max_column + 1):
|
||||
data_list = []
|
||||
data_row = [first_group_sheet.cell(row=1, column=column_num).value]
|
||||
|
||||
for group_name, sheet_name in sheet_dict.items():
|
||||
group_data = []
|
||||
data_count = len(groups[group_name])
|
||||
for i in range(2, data_count + 2):
|
||||
data_value = workbook[sheet_name].cell(row=i, column=column_num).value
|
||||
if not np.isnan(data_value):
|
||||
group_data.append(data_value)
|
||||
data_list.append(group_data)
|
||||
|
||||
if len(data_list[0]) == 0:
|
||||
continue
|
||||
|
||||
f_value, p_value = f_oneway(*data_list)
|
||||
data_row += [f_value, p_value]
|
||||
work_sheet.append(data_row)
|
||||
|
||||
|
||||
def main():
|
||||
data_types = ['corr-CBF']
|
||||
atlas_list = ['AnImage_AAL3']
|
||||
|
||||
output_file = r'..\Data\csv-ANOVA-SciPy.xlsx'
|
||||
group_file = r'..\Data\group.xlsx'
|
||||
patient_root = r'..\Data\csv-data'
|
||||
|
||||
groups = {}
|
||||
|
||||
group_workbook = openpyxl.load_workbook(group_file)
|
||||
for sheet_name in group_workbook.sheetnames:
|
||||
group = []
|
||||
group_sheet = group_workbook[sheet_name]
|
||||
for i in range(1, group_sheet.max_row + 1):
|
||||
patient_id = group_sheet.cell(row=i, column=1).value
|
||||
patient_path = os.path.join(patient_root, patient_id)
|
||||
group.append(patient_path)
|
||||
groups[sheet_name] = group
|
||||
|
||||
all_group = []
|
||||
for group in groups.values():
|
||||
all_group += group
|
||||
|
||||
work_book = openpyxl.Workbook()
|
||||
work_book.remove(work_book.active)
|
||||
|
||||
for data_type in data_types:
|
||||
for atlas in atlas_list:
|
||||
atlas_new_name = atlas.replace("AnImage_", "")
|
||||
for group_key in groups.keys():
|
||||
work_sheet = work_book.create_sheet(title=f'{group_key}_{atlas_new_name}_{data_type}')
|
||||
write_to_work_sheet(work_sheet, groups[group_key], atlas, data_type)
|
||||
|
||||
work_sheet = work_book.create_sheet(title=f'ALL_{atlas_new_name}_{data_type}')
|
||||
write_to_work_sheet(work_sheet, all_group, atlas, data_type)
|
||||
|
||||
for data_type in data_types:
|
||||
for atlas in atlas_list:
|
||||
atlas_new_name = atlas.replace("AnImage_", "")
|
||||
work_sheet = work_book.create_sheet(title=f'ANOVA_{atlas_new_name}_{data_type}')
|
||||
write_anova(work_book, work_sheet, groups, atlas_new_name, data_type)
|
||||
|
||||
work_book.save(output_file)
|
||||
|
||||
|
||||
main()
|
||||
Loading…
Add table
Add a link
Reference in a new issue