71 lines
2.6 KiB
Python
71 lines
2.6 KiB
Python
import numpy as np
|
||
import openpyxl
|
||
import os.path
|
||
import matplotlib.pyplot as plt
|
||
|
||
|
||
def draw_cbf_graph(cbf_mean_dict, data_type, save_path):
|
||
plt.rcParams["figure.figsize"] = [32, 18]
|
||
plt.rcParams["figure.autolayout"] = True
|
||
plt.rcParams["font.sans-serif"] = ["SimHei"] # 设置字体
|
||
subplot = plt.subplot(1, 1, 1, projection='polar')
|
||
|
||
count = len(cbf_mean_dict)
|
||
theta = np.linspace(0.0, 2 * np.pi, count, endpoint=False)
|
||
data = np.array(list(cbf_mean_dict.values()))
|
||
width = 1.8 * np.pi / count
|
||
subplot.set_theta_zero_location('N')
|
||
subplot.set_theta_direction(-1)
|
||
subplot.xaxis.set_ticks(theta)
|
||
subplot.yaxis.set_ticks([])
|
||
|
||
bars = subplot.bar(x=theta, height=data, width=width)
|
||
for data_value, bar in zip(data, bars):
|
||
bar.set_facecolor(plt.cm.turbo(data_value / 60))
|
||
bar.set_alpha(0.8)
|
||
for theta_value, data_value in zip(theta, data):
|
||
margin = data.max() * 0.08
|
||
subplot.annotate(str(round(data_value, 2)), xy=(theta_value, data_value + margin))
|
||
|
||
subplot.set_xticklabels(list(cbf_mean_dict.keys()))
|
||
for label, angle in zip(subplot.get_xticklabels(), theta):
|
||
x, y = label.get_position()
|
||
lab = subplot.text(x, y - 0.1, label.get_text(), transform=label.get_transform(), ha=label.get_ha(),
|
||
va=label.get_va())
|
||
rotation = - np.rad2deg(angle) + 90
|
||
if rotation < -90:
|
||
rotation += 180
|
||
lab.set_rotation(rotation)
|
||
subplot.set_xticklabels([])
|
||
|
||
plt.title(f"221例健康人西门子5延迟数据各脑区{data_type}")
|
||
plt.savefig(save_path, dpi=200)
|
||
plt.cla()
|
||
plt.close('all')
|
||
|
||
|
||
def main():
|
||
# 请尝试添加att参数,并调整色阶范围使得CBF=40时为红色,60时为蓝色
|
||
data_types = ['corr-CBF']
|
||
atlas_list = ['AnImage_AAL3']
|
||
output_dir = r'..\Data\polar-graph'
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
input_file = r'..\Data\csv-simple-stat.xlsx'
|
||
workbook = openpyxl.load_workbook(input_file, data_only=True)
|
||
|
||
for data_type in data_types:
|
||
for atlas in atlas_list:
|
||
cbf_mean_dict = {}
|
||
worksheet = workbook[f'{atlas}_{data_type}']
|
||
for column_num in range(2, worksheet.max_column + 1):
|
||
name = worksheet.cell(row=1, column=column_num).value
|
||
mean = worksheet.cell(row=worksheet.max_row - 8, column=column_num).value
|
||
print(atlas, data_type, name, mean)
|
||
if type(mean) is float:
|
||
cbf_mean_dict[name] = mean
|
||
|
||
draw_cbf_graph(cbf_mean_dict, data_type, os.path.join(output_dir, f'{atlas}_{data_type}.png'))
|
||
|
||
|
||
main()
|